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Uniqueness of Optimal Mitigation E!orts

As eluded to in the main text, there can be multiple local maxima that satisfy the FOC characterized by

equation 1. The government’s payo!, ug(ag, A;ωg), is composed of two single peaked functions. In terms

of policy, ag →
a2
gωg

2 is a concave function with a maximum at ag = 1
ωg

that contributes the terms 1→ ωgag

to the FOC. The probability of being shamed is decreasing in ag, and contributes the εg
↑
ϑϖ

(↑
ϑ(y → ag)

)

term to the FOC.

foc =
dug(ag, A;ωg)

dag
= 1→ ωga

→
g + εg

√
ϑϖ(

√
ϑ(y → a→g))

and the second-order condition (SOC)

soc =
d2ug(ag, A;ωg)

da2g
= →ωg + εgϑ

√
ϑ(y → a→g)ϖ(

√
ϑ(y → a→g)).

When signals are imprecise the government’s payo! is globally concave and so there is only a single solution

to foc = 0, as formally stated in the following lemma.

Lemma A.1 If ϑ <
↑
2eεωg

ϑg
(or equivalently εg <

↑
2eεωg

ϖ ), then the government’s payo! ug(ag, A;ωg) is

globally concave for any y, there is a unique solution to foc = 0 and a→g ↓ 1
ωg

.

Proof of Lemma A.1: The second order condition is soc = →ωg + εgϑ
↑
ϑ(y → ag)ϖ(

↑
ϑ(y → ag)), which

has a maximum of ϖϑg↑
2eε

→ ωg at y → ag = 1↑
ϖ
. Hence if ϑ <

↑
2eεωg

ϑg
then soc is always negative and the

government’s optimization is globally concave and foc is decreasing in ag. At ag = 1
ωg

, foc ↓ 0 and as

ag ↔ ↗, foc ↔ →↗, therefore there is a unique a→g ↓ 1
ω such that foc = 0.

If signals are more precise then the government’s utility function, ug(ag, A;ωg), is potentially two peaked

with a peak around ag = 1
ωg

and another peak around ag = y. If y is relatively close to 1
ωg

, then these

two peaks coincide resulting in the aggregate ug(·) being single peaked. In contrast if y is relatively large

compared to 1
ωg

, then ug(ag, A;ωg) is two peaked and there are two local maxima that satisfy the foc = 0

(and soc < 0). Further since ug(·) is continuous, if there are two local maxima, then there must also be a

local minimum between them that satisfies foc = 0 and soc > 0. The following lemma exploits this graphical

exposition of the shape of ug(·).

The first two conditions show that when y is relatively extreme (less than 1
ωg

or greater than
1+

↑
2ωgϑg

ωg
),

then, with precise signals, the government’s e!ort is close to 1
ωg

. The third condition exploits the fact that

if there are two local maxima that satisfy foc = 0, then there must also be a local minimum between them.

If signals are imprecise, then no such minimum can exist and therefore there is a unique local maximum. In
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contrast, if signal are precise, then two local maxima that satisfy foc = 0 can exist and therefore a→g can be

discontinuous in y.

Lemma A.2 1. If y ↘ 1
ωg

, then a→g ↓ 1
ωg

.

2. If y ↓ 1+
↑

2ωgϑg

ωg
, then a→g ≃ [1/ωg, y).

3. ϑ <
4ω2

g

(ωgy↓1)2 is su”cient to ensure there is a unique local maximum that satisfies foc = 0 and a→g is

continuous in y. If ϑ >
4ω2

g

(ωgy↓1)2 then there can be two maxima that satisfy foc = 0 and a→g can be

discontinuous in y.

4. As ϑ ↔ ↗, a→g ↔ max{y, 1
ωg

} if y <
↑
2
↑

ωg
↑
ϑg+1

ωg
; and a→g ↔ 1

ωg
if y >

↑
2
↑

ωg
↑
ϑg+1

ωg
.

Proof of Lemma A.2: For part 1, if y ↘ 1
ωg

, then for ag < 1/ωg the government’s payo! is strictly

increasing in ag. For ag = 1/ωg, the foc ↓ 0 and for all ag > 1/ωg, soc < 0, so foc is strictly decreasing in

ag for all ag ↓ 1/ωg and therefore the foc can only cross zero once.

For part 2 consider the following limiting cases. The government can always play ag = 1
ωg

and get a

payo! at least as big as 1
2ωg

→ εg. In contrast suppose the government plays ag ↓ y and take the limiting

case that playing ag = y fully avoids shame (limiting case as ϑ ↔ ↗). The payo! from this e!ort is less

than or equal to y → y2ωg

2 . Comparing these payo!s, the former is larger if y ↓ 1+
↑

2ωgϑg

ωg
. Hence when this

condition holds, the government prefers to play some ag ≃ [1/ωg, y), than any ag ↓ y.

For part 3, when foc = 0 holds then, ωga→g → 1 = εg
↑
ϑϖ(

↑
ϑ(y → a→g)). Substitute the RHS into SOC:

soc = →ωg + ϑ(y → a→g)(ωga→g → 1). Since the ug(·) is continuous in ag, there can only be two local maxima if

there is also a local minimum between them. The soc expression is maximized by ag = y+1/ωg

2 which yields

a maximum of →ωg +
ϖ+ϖω2

gy
2↓2ϖωgy

4ωg
. Hence provided that ϑ <

4ω2
g

(ωgy↓1)2 , the soc expression is negative for

all foc = 0 and so there cannot be a local minimum. Absent a local min there must be a unique maximum.

In contrast if signals are relatively precise, ϑ >
4ω2

g

(ωgy↓1)2 , then there can be two local maxima that satisfy

foc = 0 and the best e!ort a→g can be discontinuous in y.

Part 4 is simply the limiting case elaborated on in the text. If ag < y, then ug(ag) = A→ ωga
2
g

2 →εg which

is maximized by ag = 1
ωg

. If ag > y, then ug(ag) = A→ ωgy
2

2 , which for y > 1
ωg

is maximized by ag = y. The

condition y =
↑
2
↑

ωg
↑
ϑg+1

ωg
follows directly from equating these payo!s.
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Party Payo!s in the General Model

We plot parties’ payo!s VB and VG in Figure A.1. The left panel of the figure shows party payo!s as a

function of y if parties only care about policy outcomes. By setting y, a party can influence the policy choice

of the other party. For instance, G can tie B’s hands in terms of enacting greater mitigation e!orts after the

election. As y becomes more ambitious, B’s payo! decreases quite substantially as it exerts e!ort further

and further from its ideal point to meet the pledge. By contrast, since G would be willing to implement

more ambitious mitigation strategies ex ante, its payo! decreases less dramatically as it incurs the costs of

exerting e!ort to meet an increasingly ambitious commitment. For su”ciently high y, it becomes too costly

for either party to meet the commitment, and they revert to implementing their ideal points, knowing that

it is likely that they will be shamed. In this case, parties generically prefer a lower commitment so it will be

easy for them to both implement their ideal point and avoid shaming.

Figure A.1: Party Payo!s as a Function of Commitments

(a) Party Payo!s: Policy Incentives
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(b) Party Payo!s: O”ce Incentives
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In the right panel of Figure A.1, we plot party payo!s if their main incentive in pursuing climate com-

mitments is to remain in o”ce. Parties’ considerations change dramatically when they select commitments

in order to maximize electoral success. As we describe in the limiting cases, despite their ex ante distaste

for climate action, the Brown party may have incentives to set a climate commitment that is highly am-

bitious. In so doing, B can set a target that is too high for them to meet, knowing they will likely be
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shamed if they win the election, but G will attempt to pursue it. G’s adventurous mitigation e!orts then

appear extremely costly for the voter, who knows that B, in failing to meet the commitment, will exert

e!ort closer to the voter’s ideal point. O”ce-holding concerns can therefore generate counterintuitive cases

in which anti-climate governments set more ambitious climate commitments than pro-climate governments,

knowing full well that they will not be honored, but are made in order to leverage the fact that pro-climate

governments would become less electorally attractive to voters.
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Generalization and Proofs of Winning O”ce Limiting Case

For the precise shaming limiting case (ϑ ↔ ↗), it is useful to restate some definitions and define several new

quantities:

1. ŷg =
1+

↑
2ϑgωg

ωg
is the highest commitment g will implement before preferring to implement its ideal

point and be shamed.

2. ε̂ = (ωB↓ωG)2

2ω2
GωB

is the minimum shaming cost such that B prefers to implement G’s ideal point rather

than implement its own ideal point and be shamed: uB(ãG) = uB(ãB)→ ε̂.

3. ȳ = 2ωB↓ωM
ωBωM

is the policy commitment (above ãB) such that, if implemented, the median voter would

be indi!erent between ȳ and B’s ideal point.

4. ε̄ = 2(ωM↓ωB)2

ωBω2
M

is the smallest shaming cost such that B would implement ȳ if elected (i.e. uB(ȳ) =

uB(ãB)→ ε̄).

5. ¯̄ε = (ωM↓ωB)2

2ω2
MωB

is that smallest shaming cost such that B can implement the median voter’s ideal point:

uB(ãM ) = uB(ãB)→ ¯̄ε.

6. ˆ̂ε is defined such that #(ãG, ãM ; y = ãM ) = #(ŷG, ãB ; y = ŷG). This is the smallest shaming cost

such that the largest commitment that G can credibly implement produces the same electoral bias as

B committing to the median voter’s ideal point (y = ãM ).

To limit the analysis to substantively interesting cases, we make the following assumption:

Assumption 1 If εB > ε̂ then εG > (ωB↓ωG)2↓2
↑
2
↑
ωBωG(ωB↓ωG)

↑
ϑB

2ω2
BωG

+ ωGϑB
ωB

.

This condition ensures that when B can commit to a policy above ãG that ŷG > ŷB , which substantively

means that the Green party can implement larger commitments than the Brown party. The condition is only

violated if Brown’s shaming cost vastly exceeds Green’s, such that Brown can commit to providing more

policy than Green. Such a case seems substantively unlikely.

The proposition below specifies the optimal commitments for o”ce-seeking parties.

Proposition A.1 Let ϑ ↔ ↗, $ ↔ ↗, F ↔ > 0 and Assumption 1 holds. G’s optimal climate commitment

is

y→G =






y ↘ ãB or y ≃ (ŷB , ãG] if εB < ε̄

ŷB = 1+
↑
2ϑBωB

ωB
if ε̄ ↘ εB ↘ ε̂

ãG if εB > ε̂.
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If εB ↓ ¯̄ε then B’s optimal commitment is

y→B =






ãM if εG ↘ ˆ̂ε

ŷG = 1+
↑
2ϑGωG

ωG
if εG > ˆ̂ε.

If εB < ¯̄ε then B’s optimal commitment is

y→B =






ŷB = 1+
↑
2ϑBωB

ωB
if #(ãG, ŷB ; ŷB) ↓ #(ŷG, ãB ; ŷG)

ŷG = 1+
↑
2ϑGωG

ωG
if #(ãG, ŷB ; ŷB) < #(ŷG, ãB ; ŷG)

Proof of Proposition A.1: Since o”ceholding dominates, Green seeks to maximize #(a→G, a
→
B ; y); while

Brown seeks to minimize #(a→G, a
→
B ; y). We consider each case.

First suppose that G is the incumbent and B’s shaming cost is small: εB < ε̄. All the equilibrium

commitments (y ↘ ãB or y ≃ (ŷB , ãG]) result in B and G each implementing their ideal point. Can G do

better? No, if G’s commitment is above ãG then either G implements a policy above its ideal point (which

is bad both in terms of policy and electability) or G is shamed. So G never profits by y > ãG. If G’s

commitment is y ≃ (ãB , ŷB ] then if elected B would implement this commitment, which is closer to the

median voter’s ideal point than ãB ; this would reduce the electoral bias and harm G’s electoral prospects.

Second, consider the case of a moderate shaming cost: ε̄ ↘ εB ↘ ε̂. The largest commitment that

B would implement is ŷB = 1+
↑
2ϑBωB

ωB
, which is above the median voter’s ideal point and above ȳ. In

this range, the electoral bias is increasing in y, subject to y being implemented by B. Hence G maximizes

electoral bias by a commitment to the maximizes the policy that B implements.

Finally if εB > ε̂, then any commitment y ≃ [ãG, ŷB ] results in both parties implementing the same post

election policy, which maximizes the electoral bias. Within this set of electorally optimal policies, G prefers

that its ideal point is implemented. Hence y→G = ãG.

Now consider B’s optimal commitments. The analysis is split into two cases. First suppose that B’s

shaming cost is su”ciently large that B can implement the median voter’s ideal point: εB ↓ ¯̄ε. As we saw

from the discussion of Figure 3, for all y ↘ ãG, the median voter’s ideal point minimizes #(a→G, a
→
B ; y). If B

proposes y > ãG, then #(a→G, a
→
B ; y) is minimized by pledging ŷG, the largest policy that G will implement.

Note that by assumption 1, at this pledge, B would renege and be shamed. Thus, B’s optimal choice will

be a policy that minimizes one of the two following electoral biases, #(ŷG, ã→B ; ŷG) or #(ãG, ãM ; y = ãM ).

When G’s shaming cost is large (εG > ˆ̂ε), then the former is the optimal as it produces the greatest electoral
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bias in B’s favor; and when shaming cost is smaller then the latter is optimal.

Second, suppose B’s shaming cost is insu”cient for B to implement the median voter’s ideal point:

εB < ¯̄ε. The analysis is similar to that case above, however, now B cannot commit to the median voter’s

ideal policy. Instead B picks between the largest policy that it can implement (ŷB) or the largest policy that

G can implement. The electoral biases for these pledges are #(ãG, ŷB ; ŷB) and #(ŷG, ãB ; ŷG), respectively.

Given the primacy of o”ce holding, B selects the pledge with the largest electoral bias in B’s favor.

In Proposition 3, G has a range of optimal commitments when εB < ε̄; however, all such commitments

result in an observationally equivalent outcome where the commitment does not a!ect B’s downstream e!ort

to implement policy at its ideal point. To plot Figure 4, we use the equilibrium refinement that selects the

largest commitment that G would implement (that results in no shaming for B).
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