
Appendix

Proof of Proposition 1. Proceed by backward induction. In the second period, a leader of

type ω maximizes

max
a2(ω)

ε
(
a2(ω)→ ω

ϑM

2
a2(ω)

2 → (1→ ω)
ϑM + ϑS

2
a2(ω)

2

)
.

The first-order condition is

ε
(
1→ ωϑMa2(ω)→ (1→ ω)(ϑM + ϑS)a2(ω) = 0,

which has solution a→
2
(1) = 1

εM
and a→

2
(0) = 1

εM+εS
. These choices are a maximum because

the leader’s utility function is globally concave, as the second-order condition is

→ωϑM → (1→ ω)(ϑM + ϑS) < 0.

Since a→
2
(1) > a→

2
(0) and in particular a→

2
(1) is the median voter’s ideal point, the median

voter wants to retain the incumbent leader when his posterior belief about the leader’s

honesty is greater than the prior. Moreover, since x1 is FOSD-increasing in a1, higher

signals are on average more likely to signal honesty. Therefore the voter prefers to retain

the incumbent whenever the signal x1 is greater than some threshold x̂. Let µ(x) = P (ω =

1|x1 = x) be the voter’s posterior belief that the incumbent is honest given the realized

policy outcome x1 = x. As e!ort is unobserved, let the voter have conjecture about the

incumbent’s e!ort choice, â1(ω). Formally, posterior beliefs can be expressed as

µ(x) =
ϖϱ(

↑
ς(x→ â1(1)))

ϖϱ(
↑
ς(x→ â1(1))) + (1→ ϖ)ϱ(

↑
ς(x→ â1(0)))

.
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The voter retains the incumbent i! µ(x) ↓ ϖ, which is equivalent to

x ↓ â1 + â0
2

.

Given x1 = a1 + φ1, the incumbent leader survives i! a1 + φ1 ↓ â1+â0
2

. Since φ1 ↔ N(0, 1ϑ ),

the incumbent’s reelection probability is equal to

↼(a1) = ”(
√

ς(a1 →
â1(1) + â1(0)

2
)).

In the first period, the leader of type ω maximizes

max
a1(ω)

ε
(
a1(ω)→ ω

ϑM

2
a1(ω)

2 → (1→ ω)
ϑM + ϑS

2
a1(ω)

2

)
+ ↼(a1(ω))#,

which leads to the first-order condition

ε → ωϑMa1(ω)→ (1→ ω)(ϑM + ϑS)a1(ω) +
√

ςϱ(
√
ς(a1 →

â1(1) + â1(0)

2
))# = 0.

Since beliefs are correct in equilibrium, a1(ω) = â1(ω) = a→
1
(ω), this simplifies to

ε → ωϑMa1(ω)→ (1→ ω)(ϑM + ϑS)a1(ω) +
√
ςϱ(

√
ς(
a→
1
(1) + a→

1
(0)

2
))# = 0.

Substituting in ω = 1 and ω = 0 yields the two equations in the proposition.

To show that this solution is a maximum, we ensure that the leader’s utility is concave.

The second-order condition is

→ωϑM → (1→ ω)(ϑM + ϑS) + ς3/2(a1 →
â1(1) + â1(0)

2
)ϱ(

√
ς(a1 →

â1(1) + â1(0)

2
))#.
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Let ↽ =
↑
ς(a1 → â1(1)+â1(0)

2
) so the second-order condition can be rewritten as

→ϑM → (1→ ω)ϑS + ς↽ϱ(↽)#.

The standard normal density tends to zero faster than any polynomial so ↽ϱ(↽) is zero at

↽ = 0 and approaches zero as ↽ ↗ ±↘. The derivative of ↽ϱ(↽) is ϱ(↽)→↽2ϱ(↽) with critical

points at ↽ = ±1. Note that if ↽ = →1 then the problem is globally concave. Hence the

relevant constraint is at ↽ = 1, where ↽ϱ(↽) = 1↑
2ϖe

. Hence the leader’s utility is concave i!

→ϑM → (1→ ω)ϑS +
ς↑
2↼e

# < 0,

or ς < εM+(1↓ω)εS

↑
2ϖe

!
. Hence a su$cient condition for both leaders to have concave utility

functions is ς < εM

↑
2ϖe

!
.

Furthermore, this equilibrium is unique because pooling cannot be an equilibrium. By

way of contradiction, suppose that the voter believed â1(ω) = â for any ω. Then µ(x) = ϖ for

any x, and the voter is indi!erent between retaining and replacing the incumbent. Hence,

depending on how ties are broken, the incumbent’s reelection probability is either zero or 1.

This means that the incumbent leader’s maximization problem is equivalent to

max
a1(ω)

ε
(
a1(ω)→ ω

ϑM

2
a1(ω)

2 → (1→ ω)
ϑM + ϑS

2
a1(ω)

2

)
,

the solution to which is a1(1) =
1

εM
and a1(0) =

1

εM+εS
such that a1(1) ≃= a1(0).

Proof of Corollary 1. From Proposition 1, leader’s e!ort choices satisfy

ε +
√
ςϱ(

√
ς(
a→
1
(1)→ a→

1
(0)

2
))# = εϑMa→

1
(1).

ε +
√
ςϱ(

√
ς(
a→
1
(0)→ a→

1
(1)

2
))# = ε(ϑM + ϑS)a

→
1
(0).
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The LHS of these equations are the same, which implies that εϑMa→
1
(1) = ε(ϑM + ϑS)a→1(0),

or a→
1
(1) = εM+εS

εM
a→
1
(0) so a→

1
(1) > a→

1
(0).

To see that a→
1
(1) > 1

εM
, substitute a1 =

1

εM
into the honest leader’s first-order condition

to get
√
ςϱ(

√
ς(
1/ϑM → a→

1
(0)

2
))# > 0,

which holds for any a→
1
(0). Since this first-order condition is positive, we must have a→

1
(1) >

1

εM
. Similarly, substituting a1 =

1

εM
into the captured leader’s first-order condition yields

ε(1→ ϑM + ϑS

ϑM
) +

√
ςϱ(

√
ς(
1/ϑM → a→

1
(1)

2
))#.

This expression can be either positive or negative. Note that the standard normal den-

sity takes a maximum value of 1↑
2ϖ
, and so a su$cient condition for the captured leader’s

equilibrium e!ort to be larger than 1

εM
is

ε(1→ ϑM + ϑS

ϑM
) +

√
ς

2↼
# > 0,

which occurs whenever ϑS < ϑM +
√

ϑ
2ϖ

!

ϱ .

Proof of Corollary 2. Follows from x1 FOSD-increasing in a1 and a→
1
(1) > a→

1
(0).

Proof of Corollary 3. Define the Jacobian for type ω as

Jω =




ς2vω
ςa2ω

ς2vω
ςaωςaω→

ς2vω→
ςaωςaω→

ς2vω→
ςa2

ω→



 .

Observe that ς2v1
ςa21

< 0 and ς2v0
ςa20

< 0 at the equilibrium (a→
1
, a→

0
) because they are maxima.

Further observe that ς2v1
ςa1ςa0

> 0 and ς2v0
ςa1ςa0

< 0, hence |Jω| > 0. Given this structure, the

direct and indirect e!ects have the same sign; without loss of generality I simply consider
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the direct e!ects.

By monotone comparative statics, taking the cross-partial of the leader’s utility with

respect to parameters yields

⇀2vL(at; ω)

⇀a1⇀#
=

√
ςϱ(

√
ς(a1 →

â1(1) + â1(0)

2
)) ↓ 0.

⇀2vL(at; ω)

⇀a1⇀ϑM
= →a1 ⇐ 0.

⇀2vL(at; ω)

⇀a1⇀ϑS
= →(1→ ω)a1 ⇐ 0.

⇀2vL(at; ω)

⇀a1⇀ς
=

#

2
↑
ς
ϱ(
√

ς(a1 →
â1(1) + â1(0)

2
))
(
1→ ς(a1 →

â1(1) + â1(0)

2
)2
)
.

These inequalities imply that e!ort a→ω is increasing in #, decreasing in ϑM , and a→
0
is

decreasing in ϑS. Furthermore, while the direct e!ect ςa↑1
ςεS

= 0, the indirect e!ect from a→
0
is

such that a→
1
is decreasing in ϑS as well. Also observe that

(
1 → ς(a1 → â1(1)+â1(0)

2
)2
)
> 0 is

positive as ς ↗ 0 and decreasing in ς so that the e!ect is inverse U-shaped.

Proof of Proposition 2. Proof is analogous to that of Proposition 1. The only di!erence

is the derivation of the voter’s policy cuto!, which is a function of conjectures about the

leader’s e!ort âω as well as conjectures about the messages sent to the IO p̂ω.

Denote µ(x, s) as the voter’s posterior belief about the leader’s type having observed IO

report s and signal x of the leader’s e!ort. Since the leader’s true message m and true e!ort

a are unobserved, the voter needs to have conjectures. Let âω be the voter’s conjecture about

leader-type ω’s e!ort, and let p̂ω = P (m = 1|ω) be the voter’s conjecture about the probability

that leader-type ω sent message m = 1 to the IO. Then m̂ω = p̂ωϱ(
↑
⇁(s→1))+(1→p̂ω)ϱ(

↑
⇁s)

is the total probability that that IO’s report is realized as the value s given voter’s conjectures.

Then µ(x, s) can be expressed as

µ(x, s) =
ϖϱ(

↑
ς(x→ â1))m̂1

ϖϱ(
↑
ς(x→ â1))m̂1 + (1→ ϖ)ϱ(

↑
ς(x→ â0))m̂0

,
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such that it is optimal to retain the incumbent leader whenever

x ↓ â1 + â0
2

+
log( m̂0

m̂1
)

ς(â1 → â0)
⇒ x̂(â, p̂).

Given this cuto! the rest of the proof is identical with an identical characterization of

the optimal first period e!ort.

Proof of Corollary 4. Follows from the fact that the IO’s report s has the MLRP inm(ω).

Proof of Corollary 5. Recall that the voter’s cuto! is defined as

x̂(â, p̂) =
â1 + â0

2
+

log( m̂0
m̂1

)

ς(â1 → â0)
.

It is immediate that whenever p̂1 = p̂0 then x̂(â, p̂) = â1+â0
2

, as in the model without the IO.

Optimal e!ort is thus identical to that characterized in Proposition 1.

Suppose m̂1 ≃= m̂0. The first-order condition for leader-type ω’s e!ort is

ε → εωϑMa→ ε(1→ ω)(ϑM + ϑS)a+
√

ςϱ(
√

ς(a→ â1 + â0
2

→
log( m̂0

m̂1
)

ς(â1 → â0)
))# = 0.

Since the normal density is log-concave, it is single peaked. Hence ϱ(
↑
ς(a → x̂(â, p̂))) is

single peaked in s such that there is a smax where d
dsϱ(

↑
ς(a → x̂(â, p̂))) > 0 for s < smax

and d
dsϱ(

↑
ς(a → x̂(â, p̂))) < 0 for s > smax. As such optimal e!ort is single peaked in

s,
da↑ω
ds is nonmonotonic in s. Moreover, observe that lims↔↓↗ ϱ(

↑
ς(a → x̂(â, p̂))) = 0 and

lims↔↗ ϱ(
↑
ς(a→ x̂(â, p̂))) = 0 such that as s ↗ ±↘, a→ω ↗ 1

εM+(1↓ω)εS
.

Denote leader-type ω’s optimal e!ort in the model without the IO as ãω. Therefore since

a→ω is continuous in s and ãω > 1

εM+(1↓ω)εS
there exists sω such that a→ω = ãω when

da↑ω
ds > 0

and sω such that a→ω = ãω when
da↑ω
ds < 0.

Lemma 1. If p̂1 ≃= p̂0, the voter’s threshold x̂(â, p̂):
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• increases in p̂1 if s < 1

2
and decreases in p̂1 if s > 1

2
;

• decreases in p̂0 if s < 1

2
and increases in p̂0 if s > 1

2
.

Proof of Lemma 1. The voter’s threshold is

x̂(â, p̂) =
â1 + â0

2
+

log( m̂0
m̂1

)

ς(â1 → â0)
,

where m̂ω = p̂ωϱ(
↑
⇁(s→ 1)) + (1→ p̂ω)ϱ(

↑
⇁s). Observe that

⇀m̂ω

⇀p̂ω
= ϱ(

↑
⇁(s→ 1))→ ϱ(

↑
⇁s),

which is negative if s < 1

2
and positive if s > 1

2
.

Di!erentiating with respect to p̂1 yields

⇀x̂(â, p̂)

⇀p̂1
= → 1

ς(â1 → â0)m̂1

⇀m̂1

⇀p̂1
,

such that ςx̂(â,p̂)
ςp̂1

> 0 if s < 1

2
and ςx̂(â,p̂)

ςp̂1
< 0 if s > 1

2
.

Similarly, di!erentiating with respect to p̂0 yields

⇀x̂(â, p̂)

⇀p̂0
=

1

ς(â1 → â0)m̂0

⇀m̂0

⇀p̂0
,

such that ςx̂(â,p̂)
ςp̂0

< 0 if s < 1

2
and ςx̂(â,p̂)

ςp̂0
> 0 if s > 1

2
.

Proof of Proposition 3. The leader maximizes

max
m↘{0,1}

∫ ↗

↓↗

[
ε
(
a→ω →

ϑM + (1→ ω)ϑS

2
a→

2

ω

)
+ ↼(a→ω(s))#

]
ϱ(
↑
⇁(s→m))ds,
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therefore choosing m = 1 over m = 0 whenever

∫ ↓

↔↓

[
ϱ
(
a↑ω ↓

εM + (1↓ ω)εS

2
a↑

2

ω

)
+ϖ(a↑ω(s))!

]
φ(

↑
↼(s↓1))ds ≃

∫ ↓

↔↓

[
ϱ
(
a↑ω ↓

εM + (1↓ ω)εS

2
a↑

2

ω

)
+ϖ(a↑ω(s))!

]
φ(

↑
↼s)ds,

which simplifies to

∫ ↗

↓↗
↼(a→ω(s))

(
ϱ(
↑
⇁(s→ 1))→ ϱ(

↑
⇁s)

)
ds ↓ 0.

Define %ω(p̂1, p̂0) =
∫↗
↓↗ ↼(a→ω(s))

(
ϱ(
↑
⇁(s → 1)) → ϱ(

↑
⇁s)

)
ds as the leader’s di!erence

in expected reelection probability from sending message m = 1 versus m = 0 when she is

of type ω. If p̂1 = p̂0, then x̂(a→, p̂) = a↑1+a↑0
2

, and ↼(a→ω; s) is constant in s so %ω(p̂1, p̂0) is

the di!erence of two densities integrated over their entire support, thus %ω(p̂1, p̂0) = 0. If

%ω(p̂1, p̂0) = 0, it must be because p̂1 = p̂0. Observe that ↼(a→; s) = 0 only if s ↗ ±↘, so for

any finite s ↼(a→; s) > 0. Moreover we are integrating over the entire space of s so it must be

that ↼(a→; s) is constant in s and
∫↗
↓↗

(
ϱ(
↑
⇁(s→ 1))→ ϱ(

↑
⇁s)

)
ds = 0, which occurs when

p̂1 = p̂0. Hence %ω(p̂1, p̂0) = 0 i! p̂1 = p̂0.

Now we show that p̂1 = p̂0 must occur at an interior p→ ⇑ (0, 1). For the honest type,

⇀%1(p̂1, p̂0)

⇀p̂1
=

∫ ↗

↓↗

√
ςϱ(

√
ς(a→

1
→ x̂(a→, p̂)))

1

ς(a→
1
→ a→

0
)m̂1

(
ϱ(
↑
⇁(s→ 1))→ ϱ(

↑
⇁s)

)2

ds > 0,

so increasing the voter’s belief that the honest type sends m = 1 increases the return from

playing m = 1 versus m = 0. For the captured type,

⇀%0(p̂1, p̂0)

⇀p̂0
=

∫ ↗

↓↗
→
√

ςϱ(
√

ς(a→
0
→ x̂(a→, p̂)))

1

ς(a→
1
→ a→

0
)m̂0

(
ϱ(
↑
⇁(s→1))→ϱ(

↑
⇁s)

)2

ds < 0.

From this we know that %1(p̂1, p̂0) < 0 if p̂1 < p̂0 and %1(p̂1, p̂0) > 0 if p̂1 > p̂0.

Furthermore, %0(p̂1, p̂0) > 0 if p̂1 > p̂0 and %1(p̂1, p̂0) < 0 if p̂1 < p̂0. To see that p̂1 = p̂0 = 1
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or p̂1 = p̂0 = 0 cannot be an equilibrium, observe that %1(p̂1, 1) < 0 for any p̂1, meaning

the honest type would deviate to m = 0. Similarly, %1(p̂1, 0) > 0 for any p̂0, meaning the

captured type would deviate tom = 1. Thus the only equilibrium is p→
1
= p→

0
= p ⇑ (0, 1).

A-9


